一般情况
品种:迷你雪纳瑞
年龄:8岁
性别:雄
是否绝育:是
诊断:糖尿病

01 主诉及病史

多尿、尿频两周。

食欲正常,但前两周除了喂食狗粮外,还喂食了剩菜剩饭。曾患有季节性过敏性鼻炎、肥胖症(历史最大体重为13.5 kg)和雷暴引起的焦虑症。

过敏性鼻炎曾接受过甲强龙(0.4 mg/kg,隔天一次PO)治疗,疗程为1-2个月,最后一次用药是在18个月前。甲强龙治疗期间血清ALP活性(1108 U/L;20-150)升高,出现轻度空腹高血糖(131 mg/dL;60-110)和轻度空腹高胆固醇血症(311 mg/dL;125-270)。停用甲强龙六周后ALP为451 U/L,血糖(未空腹)为122 U/L,胆固醇未测。目前未服用任何药物,过去一年也未进行血生化检测。

02 检查

存在牙结石和牙龈炎
体重10.3 kg
高血糖(401 mg/dL;60-110)
ALP升高(1039 U/L;20-150)
成熟中性粒细胞增多(13.8 k/μL;3-12)
淋巴细胞减少(0.66 k/μL;1-4.8)
尿比重1.004
尿pH值7.0
糖尿(1000 mg/dL)
蛋白尿(30 mg/dL)
该犬被诊断为糖尿病(DM)

03 治疗

在控制饮食的同时,每12小时腹腔注射6U(约0.6 U/kg)中性丙种球蛋白(NPH)胰岛素。

04 复查

5天后复查,注射胰岛素4小时后血糖为142 mg/dL。主人报告说该犬持续多尿,但没有量化。继续使用胰岛素治疗。

一周后复查,注射胰岛素4小时后出现低血糖(55 mg/dL)。没有临床症状,但体重比最初诊断时下降了0.45 kg。胰岛素剂量降至5U(约0.5 U/kg)q12h。一周后复查血糖96 mg/dL。

2个月后来洗牙时早上没有进食,也没有注射胰岛素,血糖为126 mg/dL。继续使用5U NPH 胰岛素,每12小时一次。1个月后,主人称饮水和排尿情况正常。

7个月后,因尿道梗阻就诊,X光发现尿道结石和膀胱结石。发病前数小时注射了胰岛素,血糖为138 mg/dL,ALP为280 U/L。淋巴细胞减少(0.65 k/μL)。尿比重1.025,尿pH值6.5,伴血尿、脓尿和草酸钙结晶尿;尿液中葡萄糖和酮体呈阴性。

进行了膀胱切开术,并逆行切开尿道结石,取出尿道结石(草酸钙成分)。麻醉后血糖浓度较低(58 mg/dL)。医生建议停用胰岛素,但主人继续使用了胰岛素。术后使用了卡泊芬净(2.8 mg/kg q12h,7天)和头孢氨苄(28 mg/kg q12h,14天)。3天后复查,注射胰岛素2.5小时后血糖75 mg/dL。胰岛素剂量减至4U(约0.4 U/kg)q12h。在接下来的5个月中没有复查,主人称在此期间胰岛素剂量进一步减少到3 U(约0.3 U/kg)q12h。

1年后,注射胰岛素4小时后血糖95 mg/dL。体重下降了1.7 kg,胰岛素治疗已停止。一周后的血糖为93 mg/dL。在接下来的8个月中一直在接受体重控制饮食治疗,后来出现了严重血尿。经放射线检查为膀胱结石复发。当时血糖105 mg/dL,符合糖尿病缓解标准,但没有检测ALP。尿比重1.014,尿pH值6.5,伴血尿和脓尿,尿液中葡萄糖和酮体呈阴性。进行了第二次膀胱切开术。使用了阿莫西林/克拉维酸(14.5 mg/kg,14天)和处方粮。一段时间后主人停止了这种饮食,改为非处方老年犬粮。

05 复发

初次DM诊断近两年后,胰岛素停止11个月后,因面部瘙痒、气喘、烦躁不安和多尿就诊。高血糖(486 mg/dL)和糖尿(1000 mg/dL),没有酮尿,尿比重1.033。符合糖尿病标准,恢复使用NPH胰岛素,每次5U(约0.5 U/kg),q12h。还使用了为期10天的甲强龙(起始剂量为0.48 mg/kg q12h)逐渐减量疗程,以治疗可能的过敏,并将其饮食改为另一种非处方食品。

在接下来的一年里,胰岛素剂量根据临床症状和家用血糖仪读数进行调整,包括绘制血糖曲线(每2小时绘制一次,持续12小时),这些曲线记录了持续的高血糖,最低点大于200 mg/dL。该犬在接受尿路结石复查时也测量了血糖,结果为148 mg/dL(81-125 mg/dL),尿比重大于1.045,无糖尿,但存在酮尿(15 mg/dL)和蛋白尿(300 mg/dL)。主人定期接受兽医电话咨询,胰岛素剂量也稳步增加到17U(约2.1 U/kg)q12h。

该犬12岁时(最初诊断为DM后4年,复发后2年),在一次洗牙的麻醉过程中心肺骤停。主人拒绝接受麻醉前的血液检查。没有进行尸检。

06 讨论

本报告记录了一只雄性犬在接受胰岛素治疗1年后,糖尿病(DM)自发缓解的情况。本病例挑战了犬在确诊为DM时总是存在永久性、绝对性胰岛素缺乏的经典假设[2],并支持β细胞功能或外周胰岛素抵抗存在波动的观点。

虽然该犬的病情缓解缺乏明确的原因,但它具有胰岛素抵抗的历史(肥胖和皮质类固醇治疗)以及近期(喂食可能含有高脂肪的剩饭剩菜)和持续(品种易患皮质醇过多症)危险因素[3-9]。该犬在停用胰岛素1年后复发,表明它的胰岛β细胞功能并未完全恢复,尽管在此期间它显然有能力维持正常血糖。

虽然猫的DM缓解很常见[10-13],但由于DM的病理生理学不同,狗的DM缓解并不常见[2,14]。虽然病因可能是多因素的,但狗的DM通常以部分或完全丧失β细胞导致胰岛素绝对缺乏为特征[15]。然而,人类的1型DM也以β细胞缺失为特征,在确诊后不久会出现一个缓解阶段,即所谓的”蜜月期”[16]。在此期间,使用胰岛素治疗会使剩余β细胞的功能得到短暂改善,并在减少或不使用胰岛素的情况下恢复正常血糖[16]。

蜜月期的一个主要促成因素被认为是迅速实现血糖控制和消除葡萄糖毒性[16-18]。葡萄糖毒性指的是高血糖对β细胞的持续影响,导致β细胞死亡和功能障碍,进而丧失内源性胰岛素分泌。在猫、人和狗身上都有葡萄糖毒性的记录[19-23]。

如果在确诊时β细胞损失有限,并在病程早期开始强化胰岛素治疗,那么患有1型或2型DM的人类可能更容易进入缓解期[17,24]。有证据表明,强化胰岛素管理也能提高猫的缓解率[11-13]。在人类中,蜜月期的平均开始时间为胰岛素治疗后的3-6个月,一般持续时间小于1年[16]。本文报告的这只狗在确诊时β细胞受损的程度无法确定,但胰岛素治疗在临床症状出现后不久(2周)就开始了。

饮食在血糖控制中发挥着作用,但饮食在这只狗的病情缓解和复发中的作用尚不清楚。碳水化合物和脂肪含量较低而不溶性纤维含量较高的配方可延缓胃排空,减缓碳水化合物的吸收,降低餐后高血糖,改善组织对胰岛素的敏感性,减轻犬的胃肠道内分泌反应[25-28]。

这只狗被初步诊断为DM后,其饮食从普通饮食过渡到治疗性体重管理饮食。与营养成分相似但不溶性纤维含量较低的饮食(4.6克/100千卡)相比,治疗性体重管理饮食不溶性纤维含量较高(7.3克/100千卡),可能会改善DM犬的血糖[27]。然而在喂食不溶性纤维(2.6-4.6克/100 千卡)、碳水化合物和脂肪含量不同犬粮的DM犬中,血糖没有明显差异[29]。因此很难确认饮食对该犬DM缓解的作用。

在停止外源性胰岛素治疗后,这种饮食又持续了8个月,之后该犬过渡到处方粮饮食,在DM复发前又过渡到普通粮。无法明确饮食营养成分在该犬DM缓解或复发中的作用,原因在于所喂饮食的数量报告不一致,无法确定不同饮食的热量摄入是否存在差异。

身体状况也会影响血糖控制。据报道,该患者在确诊为DM前存在肥胖,病情缓解时体重减轻了15%。肥胖会降低细胞对胰岛素的敏感性,导致全身胰岛素需求量增加[3,30,31]。狗的胰岛素敏感性会随着体重下降和饮食限制而提高[31-33]。该患者的体重减轻可能会提高胰岛素敏感性,从而提高血糖控制能力,有助于DM缓解。然而,虽然提高胰岛素敏感性可能会减轻残存β细胞的负担,但却无法恢复已经缺失的β细胞。

本报告的局限性在于,在DM初期既没有评估血糖曲线,也没有测量糖化蛋白浓度,如果糖胺或HbA1c。这些结果将有助于证实慢性高血糖状态,并确定血糖控制的程度和时间。尽管如此,该犬在首次诊断和复发时都符合DM诊断标准。

犬DM的定义是随机血糖浓度≥200 mg/dL,并伴有典型的高血糖临床症状(本病例为多尿),且无其他合理原因[1]。该犬还有明显的糖尿,支持高血糖状态。在后续的治疗中,它还符合DM缓解标准,即停止外源性胰岛素后4周内无临床症状且无DM证据。他的临床症状在停止治疗1周和8个月后消失了,血糖恢复正常。不过,鉴于这些血糖检查的频率很低,不能排除持续、间歇性、亚临床高血糖的可能性。

另一个局限性是缺乏先进的腹部成像(即腹部超声或CT)或尸检结果。这些检查可能有助于了解其DM病因,并发现相关合并症的证据,如胰腺炎或皮质醇增多症。初步诊断时,该犬的尿比重(1.004)明显比仅由DM引起多尿的犬的尿比重更低[43],这表明其他疾病过程也可能导致了多尿。

参考文献


[1] Niessen SJM, Bjornvad C, Church DB, et al. Agreeing language in veterinary endocrinology (ALIVE): diabetes mellitus—a modified Delphi-method-based system to create consensus disease definitions. Vet J. 2022; 289:105910.
[2] Nelson RW, Reusch CE. Animal models of disease: classification and etiology of diabetes in dogs and cats. J Endocrinol. 2014; 222: T1-T9.
[3] Verkest KR, Rand JS, Fleeman LM, Morton JM. Spontaneously obese dogs exhibit greater postprandial glucose, triglyceride, and insulin concentrations than lean dogs. Domest Anim Endocrinol. 2012; 42: 103-112.
[4] Campbell KL, Latimer KS. Transient diabetes mellitus associated with prednisone therapy in a dog. J Am Vet Med Assoc. 1984; 185: 299-301.
[5] Klinkenberg H, Sallander MH, Hedhammar A. Feeding, exercise, and weight identified as risk factors in canine diabetes mellitus. J Nutr. 2006; 136: 1985s-1987s.
[6] Pöppl AG, de Carvalho GLC, Vivian IF, Corbellini LG, González FHD. Canine diabetes mellitus risk factors: a matched case-control study. Res Vet Sci. 2017; 114: 469-473.
[7] Rocchini AP, Marker P, Cervenka T. Time course of insulin resistance associated with feeding dogs a high-fat diet. Am J Physiol. 1997; 272: E147-E154.
[8] Fleeman L, Barrett R. Cushing’s syndrome and other causes of insulin resistance in dogs. Vet Clin North Am Small Anim Pract. 2023; 53: 711-730.
[9] Hoffman JM, Lourenço BN, Promislow DEL, Creevy KE. Canine hyperadrenocorticism associations with signalment, selected comorbidities and mortality within North American veterinary teaching hospitals. J Small Anim Pract. 2018; 59: 681-690.
[10] Zini E, Hafner M, Osto M, et al. Predictors of clinical remission in cats with diabetes mellitus. J Vet Intern Med. 2010; 24: 1314-1321.
[11] Nack R, DeClue AE. In cats with newly diagnosed diabetes mellitus, use of a near-euglycemic management paradigm improves remission rate over a traditional paradigm. Vet Q. 2014; 34: 132-136.
[12] Roomp K, Rand J. Intensive blood glucose control is safe and effective in diabetic cats using home monitoring and treatment with glargine. J Feline Med Surg. 2009; 11: 668-682.
[13] Roomp K, Rand J. Evaluation of detemir in diabetic cats managed with a protocol for intensive blood glucose control. J Feline Med Surg. 2012; 14: 566-572.
[14] Gilor C, Niessen SJM, Furrow E, DiBartola SP. What’s in a name? Classification of diabetes mellitus in veterinary medicine and why it matters. J Vet Intern Med. 2016; 30: 927-940.
[15] Shields EJ, Lam CJ, Cox AR, et al. Extreme beta-cell deficiency in pancreata of dogs with canine diabetes. PloS One. 2015; 10:e0129809.
[16] Zhong T, Tang R, Gong S, Li J, Li X, Zhou Z. The remission phase in type 1 diabetes: changing epidemiology, definitions, and emerging immuno-metabolic mechanisms. Diabetes Metab Res Rev. 2020; 36:e3207.
[17] Effect of intensive therapy on residual beta-cell function in patients with type 1 diabetes in the diabetes control and complications trial. A randomized, controlled trial. The Diabetes Control and Complications Trial Research Group. Ann Intern Med. 1998; 128: 517-523.
[18] Akirav E, Kushner JA, Herold KC. Beta-cell mass and type 1 diabetes: going, going, gone? Diabetes. 2008; 57: 2883-2888.
[19] Link KR, Allio I, Rand JS, et al. The effect of experimentally induced chronic hyperglycaemia on serum and pancreatic insulin, pancreatic islet IGF-I and plasma and urinary ketones in the domestic cat (Felis felis). Gen Comp Endocrinol. 2013; 188: 269-281.
[20] Zini E, Osto M, Franchini M, et al. Hyperglycaemia but not hyperlipidaemia causes beta cell dysfunction and beta cell loss in the domestic cat. Diabetologia. 2009; 52: 336-346.
[21] Giaccari A, Sorice G, Muscogiuri G. Glucose toxicity: the leading actor in the pathogenesis and clinical history of type 2 diabetes—mechanisms and potentials for treatment. Nutr Metab Cardiovasc Dis. 2009; 19: 365-377.
[22] Imamura T, Koffler M, Helderman JH, et al. Severe diabetes induced in subtotally depancreatized dogs by sustained hyperglycemia. Diabetes. 1988; 37: 600-609.
[23] Fall T, Hedhammar A, Wallberg A, et al. Diabetes mellitus in elkhounds is associated with diestrus and pregnancy. J Vet Intern Med. 2010; 24: 1322-1328.
[24] Weng J, Li Y, Xu W, et al. Effect of intensive insulin therapy on beta-cell function and glycaemic control in patients with newly diagnosed type 2 diabetes: a multicentre randomised parallel-group trial. Lancet. 2008; 371: 1753-1760.
[25] Blaxter AC, Cripps PJ, Gruffydd-Jones TJ. Dietary fibre and post prandial hyperglycaemia in normal and diabetic dogs. J Small Anim Pract. 1990; 31: 229-233.
[26] Teshima E, Brunetto MA, Teixeira FA, et al. Influence of type of starch and feeding management on glycaemic control in diabetic dogs. J Anim Physiol Anim Nutr. 2021; 105: 1192-1202.
[27] Kimmel SE, Michel KE, Hess RS, Ward CR. Effects of insoluble and soluble dietary fiber on glycemic control in dogs with naturally occurring insulin-dependent diabetes mellitus. J Am Vet Med Assoc. 2000; 216: 1076-1081.
[28] Ellmerer M, Hamilton-Wessler M, Kim SP, et al. Reduced access to insulin-sensitive tissues in dogs with obesity secondary to increased fat intake. Diabetes. 2006; 55: 1769-1775.
[29] Fleeman LM, Rand JS, Markwell PJ. Lack of advantage of high-fibre, moderate-carbohydrate diets in dogs with stabilised diabetes. J Small Anim Pract. 2009; 50: 604-614.
[30] Verkest KR, Fleeman LM, Morton JM, Ishioka K, Rand JS. Compensation for obesity-induced insulin resistance in dogs: assessment of the effects of leptin, adiponectin, and glucagon-like peptide-1 using path analysis. Domest Anim Endocrinol. 2011; 41: 24-34.
[31] Larson BT, Lawler DF, Spitznagel EL Jr, et al. Improved glucose tolerance with lifetime diet restriction favorably affects disease and survival in dogs. J Nutr. 2003; 133: 2887-2892.
[32] German AJ, Hervera M, Hunter L, et al. Improvement in insulin resistance and reduction in plasma inflammatory adipokines after weight loss in obese dogs. Domest Anim Endocrinol. 2009; 37: 214-226.
[33] André A, Leriche I, Chaix G, Thorin C, Burger M, Nguyen P. Recovery of insulin sensitivity and optimal body composition after rapid weight loss in obese dogs fed a high-protein medium-carbohydrate diet. J Anim Physiol Anim Nutr. 2017; 101(Suppl 1): 21-30.
[34] Heeley AM, Brodbelt DC, O’Neill DG, Church DB, Davison LJ. Assessment of glucocorticoid and antibiotic exposure as risk factors for diabetes mellitus in selected dog breeds attending UK primary-care clinics. Vet Rec. 2023; 192:e2785.
[35] Alejandro R, Feldman EC, Shienvold FL, Mintz DH. Advances in canine diabetes mellitus research: etiopathology and results of islet transplantation. J Am Vet Med Assoc. 1988; 193: 1050-1055.
[36] Brito-Casillas Y, Melián C, Holder A, et al. Studying the heterogeneous pathogenesis of canine diabetes: observational characterization of an Island population. Vet Med Sci. 2021; 7: 1071-1081.
[37] Lem KY, Fosgate GT, Norby B, Steiner JM. Associations between dietary factors and pancreatitis in dogs. J Am Vet Med Assoc. 2008; 233: 1425-1431.
[38] Xenoulis PG, Levinski MD, Suchodolski JS, Steiner JM. Association of hypertriglyceridemia with insulin resistance in healthy miniature schnauzers. J Am Vet Med Assoc. 2011; 238: 1011-1016.
[39] Xenoulis PG, Levinski MD, Suchodolski JS, Steiner JM. Serum triglyceride concentrations in miniature schnauzers with and without a history of probable pancreatitis. J Vet Intern Med. 2011; 25: 20-25.
[40] Xenoulis PG, Suchodolski JS, Ruaux CG, Steiner J̈M. Association between serum triglyceride and canine pancreatic lipase immunoreactivity concentrations in miniature schnauzers. J Am Anim Hosp Assoc. 2010; 46: 229-234.
[41] Eigenmann JE, Eigenmann RY, Rijnberk A, van der Gaag I, Zapf J, Froesch ER. Progesterone-controlled growth hormone overproduction and naturally occurring canine diabetes and acromegaly. Acta Endocrinol. 1983; 104: 167-176.
[42] Pöppl AG, Mottin TS, González FH. Diabetes mellitus remission after resolution of inflammatory and progesterone-related conditions in bitches. Res Vet Sci. 2013; 94: 471-473.
[43] Nelson RW. Canine diabetes mellitus. In: EC Feldman, RW Nelson, C Reusch, JC Scott-Moncrieff, eds. Canine and Feline Endocrinology. 4th ed. Saint Louis, MO: Elsevier; 2014.

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注